What's Hot

    Gordon Moore, Intel Co-Founder, Tech Industry Visionary and Passes At 94

    April 11, 2023

    NVIDIA CES 2023 Special Address Live Blog (8am PT/16:00 UTC)

    April 9, 2023

    Intel Leadership Shuffle: Stuart Pann in for IFS, Raja Koduri out for GPUs & off to AI Startup

    April 6, 2023
    Facebook Twitter Instagram
    PC Central
    • Home
    • Guides
    • CPU

      Gordon Moore, Intel Co-Founder, Tech Industry Visionary and Passes At 94

      April 11, 2023

      AMD Quietly Launches A620 Platform: Sub $100 AM5 Motherboards

      March 17, 2023

      Intel Unveils Core i9-13900KS: Raptor Lake Spreads Its Wings to 6.0 GHz

      March 15, 2023

      Best CPUs for Gaming March 2023

      March 7, 2023

      A Lighter Touch: Exploring CPU Power Scaling On Core i9-13900K and Ryzen 9 7950X

      February 14, 2023
    • gpus

      NVIDIA CES 2023 Special Address Live Blog (8am PT/16:00 UTC)

      April 9, 2023

      Intel Leadership Shuffle: Stuart Pann in for IFS, Raja Koduri out for GPUs & off to AI Startup

      April 6, 2023

      The AMD CES 2023 Keynote Live Blog (6:30pm PT/02:30 UTC)

      March 27, 2023

      AMD Issues Early Q3’22 Financial Results: Misses Guidance By $1B as Client Revenue Craters

      March 25, 2023

      NVIDIA Releases Hotfix For GeForce Driver To Resolve CPU Usage Spikes

      March 20, 2023
    • Notebook Reviews

      The ASUS Vivobook Pro 15 OLED Review: For The Creator In All Of Us

      March 30, 2023

      Intel Expands 12th Gen Core to Ultraportable Laptops, from 5-cores at 9 W to 14-cores at 28 W

      March 22, 2023

      Intel Alder Lake-H Core i9-12900HK Review: MSI's Raider GE76 Goes Hybrid

      February 23, 2023

      Updated AMD Notebook Roadmap: Zen 4 on 4nm in 2023, Zen 5 By End of 2024

      January 7, 2023

      AMD Mobile GPU 2022 Update: Radeon 6000S Series, 6x50M Parts, and Navi 24-Based 6500M and 6300M

      December 30, 2022
    • Desktop Reviews

      ZOTAC’s Streaming Mini-PC, the MI553B, with Integrated AVerMedia Capture Card

      March 26, 2023

      Samsung ArtPC: Cylindrical PC with 360º audio, i5/i7 plus NVMe, Preorders from $1200

      March 26, 2023

      HP Envy 27-Inch AIO Updates: Six-Core Coffee Lake, 4K Display, NVMe

      March 16, 2023

      AMD Creates Quad Core Zen SoC with 24 Vega CUs for Chinese Consoles

      March 12, 2023

      ASUS Booth Tour at CES 2016: 10G Switches, External GPU Dock, USB-C Monitor and more

      February 20, 2023
    • Mac Reviews
    Facebook Twitter Instagram
    PC Central
    Home»CPU»The Intel Core i9-13900KS Review: Taking Intel's Raptor Lake to 6 GHz
    CPU

    The Intel Core i9-13900KS Review: Taking Intel's Raptor Lake to 6 GHz

    bfteamBy bfteamSeptember 1, 2022No Comments10 Mins Read
    Facebook Twitter Pinterest LinkedIn Tumblr Email
    Share
    Facebook Twitter LinkedIn Pinterest Email

    Back at Intel's Innovation 2022 event in September, the company let it be known that it had plans to release a '6 GHz' processor based on its Raptor Lake-S series of processors. Though it didn't come with the same degree of fanfare that Intel's more imminently launching 13900K/13700K/13600K received, it put enthusiasts and industry watchers on notice that Intel still had one more, even faster Raptor Lake desktop chip waiting in the wings.

    Now a few months later, Raptor Lake's shining moment has arrived. Intel has launched the Intel Core i9-13900KS, a 24-core (8x Perf + 16x Efficiency) part with turbo clock speeds of up to 6 GHz. A mark, which until very recently, was unprecedented without the use of exotic cooling methods such as liquid nitrogen (LN2). 

    In what is likely to be one of the last in a wide range of Raptor Lake-S SKUs to be announced, Intel has seemingly saved its best for last. The Intel Core i9-13900KS is the faster and unequivocal bigger brother to the Core i9-13900K, with turbo clock speeds of up to 6 GHz while maintaining its halo presence with a 200 MHz increase on both P-core and E-core base frequencies.

    Intel's focus and strategy on delivering halo-level processors in limited supply is something that's become a regular part of their product stack over the last few years. We've previously seen the Core i9-9900KS (Coffee Lake) and i9-12900KS (Alder Lake), which were relative successes in showcasing each Core architecture at their finest point. The Core i9-13900KS looks to follow this trend, although it comes as we've reached a time where power efficiency and costs are just a few widely shared concerns globally.

    Having the best of the best is somewhat advantageous when there's a need for cutting-edge desktop performance, but at what cost? Faster cores require more energy, and more energy generates more heat; 6 GHz for the average consumer is finally here, but is it worth taking the plunge? We aim to find out in our review of the 6 GHz Core i9-13900KS.

    The Intel Core i9-13900KS: Raptor Lake Goes to 6 GHz

    AMD and Intel's R&D teams have been working hard in the last few years to keep trading blows in key areas such as core count, IPC performance, and, of course, price. When it comes to focusing on what flagship CPUs are, some gain their status by offering large numbers of cores and very respectable clock speeds to gain that edge in performance over the competition. While getting the right balance of more cores with faster speeds is advantageous, Intel and AMD have in recent years definitely pushed their silicon to very near their ability and capability limits.

    The Intel Core i9-13900KS is a juxtaposition in combining high core count with incredibly high frequencies into one silicon package that can be slotted into an appropriate LGA1700 motherboard. It still has the same 24 CPU cores that the Core i9-13900K has. Concerning specifications, all are the same except for clock speeds and TDP. The Core i9-13900KS has eight Raptor Cove Performance (P) cores for the compute workloads potatoes, while sixteen are Efficiency (E) cores based on the Gracemont architecture to pick up other areas of slack.

    Intel's hybrid architecture design of performance and efficiency cores, sometimes called big/little, works well. However, it does require a suitable operating system (these days, Windows 11) to utilize the Thread Director scheduling efficiently and effectively.

    Intel 13th Gen Core i9 Series (Raptor Lake-S)
    AnandTech Cores
    P+E/T
    P-Core
    Base
    P-Core
    Turbo
    E-Core
    Base
    E-Core
    Turbo
    L3 Cache
    (MB)
    IGP Base
    W
    Turbo
    W
    Price
    ($)
    i9-13900KS 8+16/32 3200 6000 2400 4300 36 770 253 253/320 $699
    i9-13900K 8+16/32 3000 5800 2200 4300 36 770 125 253 $589
    i9-13900KF 8+16/32 3300 5800 2200 4300 36 – 125 253 $564
     
    i9-13900 8+16/32 2000 5600 1500 4200 36 770 65 219 $549
    i9-13900F 8+16/32 2000 5600 1500 4200 36 – 65 219 $524
    i9-13900T 8+16/32 1100 5300 800 3900 36 770 35 106 $549

    What makes the Core i9-13900KS different from the rest of the 13th Gen Core i9 series line-up, aside from the apparent increases in P-core and E-core base frequencies and a 6 GHz turbo, is that is a special bin from existing silicon. Experiences with the Core i9-13900K in terms of overclocking ability are mixed, with few of these chips having the capability to run at 6 GHz without exotic cooling methods such as liquid nitrogen and dry ice.  

    While matching batch numbers is usually the closest method to obtaining parity levels in overclocking ability, it's not an exact science. Talking realistically, no two processors are the same when they come out of the factory. The benefit of having Intel bin their silicon in-house for its KS series is helpful for extreme overclockers, as its guarantees that each i9-13900KS will hit turbo clock speeds of 6 GHz; on two of the P-cores, at least. This also means the Core i9-13900KS, by default, will draw more power and run hotter – upwards of 320 Watts, to be precise.

    Looking at the specifications of the Core i9-13900KS, it has 24 cores (8P+16E) and 32 threads, with a maximum P-core turbo of up to 6 GHz. This makes it the fastest desktop processor on the market today, considering out-of-the-box settings and automated technologies implemented. Intel has also increased P-core and E-core base frequencies by 200 MHz from the regular 13900K, making the P-core base on the 13900KS 3.2 GHz and the E-core base 2.4 GHz. All of Intel's 13th Core Series SKUs support either DDR5-5600 or DDR4-3200 memory, which benefits users on a budget. However, buyers of the Core i9 series are likely to opt for DDR5 memory due to extra levels of performance.


    The Core i9-13900KS hit 6 GHz on cores P4 and P5 during the XTU stress test (albeit with thermal throttling)

    Intel has also increased the base TDP from 125 W to 150 W to account for the additional bump to P and E-core frequencies. What's interesting is that Intel has provided a maximum turbo power specification of 253 W. The other value Intel provides is its new Extreme Power Delivery (EPD) profile of 320 W. This makes it one of the most power-hungry processors out of the box, especially when at full-load in a compute-heavy task.


    Attaining 6 GHz

    Outside of the 6 GHz capabilities that the Core i9-13900KS has and the increases mentioned above in base frequencies and power nuances, it shares identical specifications to the Core i9-13900K. This includes the same 36 MB of shared L3 cache across the board, 2 MB of L2 cache per performance (P) core, with 4 MB of L2 cache per each quad efficiency (E) core cluster.


    The Intel Core i9-13900KS retail packaging

    Things to Know Before Interpreting Our Test Results: Extreme Delivery Profile is 320 W (PL1/PL2)

    Expanding into Intel's new Extreme Delivery Profile enables higher power limits on the Core i9-13900KS. As per Turbo Boost Max 3.0, this is set to 253 W, the same PL1/PL2 value as on the Core i9-13900K. For the Core i9-13900KS, the Extreme Delivery Profile enables a higher profile, increasing to 320 W for the PL1 and PL2 values. This allows the Core i9-13900KS more power headroom to enable higher frequencies on two cores, which for Turbo Boost Max 3.0 is 5.8 GHz, and Thermal Velocity Boost is 6.0 GHz. 

    Intel Core i9-13900KS P-Core Turbo Frequencies
    (With Thermal Velocity Boost Active)
    AnandTech 1 Core 2 Cores 3 Cores 4 Cores 5 Cores 6 Cores 7 Cores 8 Cores
    Max Frequency (GHz) 6.0 6.0 5.6 5.6 5.6 5.6 5.6 5.6

    This completely disregards Intel's base TDP of 150 W, which by default, is also moot on the regular Core i9-13900K as this chip also employs an Extreme Delivery Profile of 253 W for the PL1 and PL2 values. Of course, it has to be stated that motherboard vendors typically ignore PL1 and PL2 values through their implementation of Multi-Core Enhancement (MCE), and they typically go for broke.

    Regarding expected performance levels, this is likely to come down to one key area; heat dissipation. The extra heat from the frequency hikes will require more aggressive cooling, and as we saw from our review of the Core i9-12900KS, the KS chips not only run with lots more power compared to the K-series counterparts, but they aren't the easiest to keep cool either.

    One thing that is important to consider is that the motherboard has to have a solid power delivery capable of sustaining up to 400 A (ICCMax) to allow the Core i9-13900KS. While the Core i9-13900KS will work in any Z690 and Z790 motherboard, it doesn't mean it should be used just because it works. Look for a motherboard with a decent quality power delivery and good VRM thermal capabilities before considering this chip to operate optimally.

    While the premise of the KS series is very favorable for some, it does require more than just installing it into a motherboard and any cooler to get optimal performance. Even with premium AIO coolers, users are likely to expect at least some thermal throttling on the KS chips – 253mm2 is simply not a lot of surface area to be dissipating 320 Watts, even with the help of a heat spreader. The best-case scenario would be a reasonable and well-thought-out custom water cooling loop with premium components and competent cooling fans. This not only adds a very hefty outlay to the cost, but achieving the best performance levels has never been a cheap process to aim for.

    The Current CPU Test Suite

    For our Intel Core i9-13900KS testing, we are using the following test system:

    Intel 13th Gen Core System (DDR5)
    CPU Core i9-13900K ($589)
    24 Cores, 32 Threads
    125 W TDP

    Core i5-13600K ($319)
    14 Cores, 20 Threads
    125 W TDP

    Motherboard GIGABYTE Z690 Aorus Master*
    Memory SK Hynix
    2×16 GB
    DDR5-5600B CL46
    Cooling EKWB EK-AIO Elite 360 D-RGB 360mm 
    Storage SK Hynix Platinum P41 2TB PCIe 4.0 x4
    Power Supply Corsair HX1000
    GPUs AMD Radeon RX 6950 XT, 31.0.12019
    Operating Systems Windows 11 22H2

    *We changed the motherboard to the GIGABYTE Z690 Aorus Master as the MSI MPG Z790 Carbon WIFI we used for our previous 13th Gen Core series reviews refused to play ball. We don't like to make these changes lightly, but we weren't able to source another Carbon in time for this review

    It should be noted that there are no CPU performance differences between Z690 and Z790 motherboards; just that the newer Z790 models benefit from more I/O options. This was confirmed to us by Intel before the release of the 13th Gen Core series.

    Our updated CPU suite for 2023 includes various benchmarks, tests, and workloads designed to show variance in performance between different processors and architectures. These include UL's latest Procyon suite with both office and photo editing workloads simulated to measure performance in these tasks, CineBench R23, Dwarf Fortress, Blender 3.3, and C-Ray 1.1.  

    Meanwhile, we've also carried over some older (but still relevant/enlightening) benchmarks from our CPU 2021 suite. This includes benchmarks such as Dwarf Fortress, Factorio, and Dr. Ian Cutress's 3DPMv2 benchmark.

    We have also updated our pool of games going forward into 2023 and beyond, including the latest F1 2022 racing game, the CPU-intensive RTS Total War: Warhammer 3, and the popular Hitman 3.

    Due to various issues with Cyberpunk 2077 giving us odd results, we've omitted this from future testing until we can identify the issue and apply a fix.

    13thGenCore 6GHz Corei9-13900KS CPUs Intel Intel13thGen LGA1700 RaptorLake RaptorLake-S
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    bfteam
    • Website

    Related Posts

    Gordon Moore, Intel Co-Founder, Tech Industry Visionary and Passes At 94

    April 11, 2023

    Intel Leadership Shuffle: Stuart Pann in for IFS, Raja Koduri out for GPUs & off to AI Startup

    April 6, 2023

    The AMD CES 2023 Keynote Live Blog (6:30pm PT/02:30 UTC)

    March 27, 2023

    Leave A Reply Cancel Reply

    • Popular Posts

    Gordon Moore, Intel Co-Founder, Tech Industry Visionary and Passes At 94

    April 11, 2023

    CES 2016: 34-inch 3440×1440 AIO Hands-On at GIGABYTE

    July 30, 2016

    CES 2016: ASRock Shows mini-STX 5×5 for Business and Education

    December 22, 2016

    CES 2016: MSI’s 27-inch 4K Gaming AIO with Full Sized Discrete GPU, the 27XT 6QE

    December 28, 2016

    Apple Updates MacBook Pro Family for 2018: More CPU Cores, DDR4, & Same Form Factors

    December 7, 2018

    Apple Announces Q1 FY 2018 Earnings

    December 20, 2018

    CES 2019: Digital Storm Spark, a ‘Mini-ITX’ with MXM RTX 2080

    August 1, 2019

    The 2020 Mac Mini Unleashed: Putting Apple Silicon M1 To The Test

    August 3, 2020
    • Privacy Policy
    • Contact Us
    © 2023 PC Central.Get expert reviews on best computers, CPUs, motherboards, graphics cards and other computer components. We provide the latest tech news and up-to-date product reviews to help you make the right choice. Join us now!

    Type above and press Enter to search. Press Esc to cancel.